Zum Hauptinhalt springen

A 3D Sparse Autoencoder for Fully Automated Quality Control of Affine Registrations in Big Data Brain MRI Studies.

Thadikemalla, VSG ; Focke, NK ; et al.
In: Journal of imaging informatics in medicine, Jg. 37 (2024-02-01), Heft 1, S. 412
Online academicJournal

Titel:
A 3D Sparse Autoencoder for Fully Automated Quality Control of Affine Registrations in Big Data Brain MRI Studies.
Autor/in / Beteiligte Person: Thadikemalla, VSG ; Focke, NK ; Tummala, S
Link:
Zeitschrift: Journal of imaging informatics in medicine, Jg. 37 (2024-02-01), Heft 1, S. 412
Veröffentlichung: [Cham, Switzerland] : Springer Nature, [2024]-, 2024
Medientyp: academicJournal
ISSN: 2948-2933 (electronic)
DOI: 10.1007/s10278-023-00933-7
Sonstiges:
  • Nachgewiesen in: MEDLINE
  • Sprachen: English
  • Publication Type: Journal Article
  • Language: English
  • [J Imaging Inform Med] 2024 Feb; Vol. 37 (1), pp. 412-427. <i>Date of Electronic Publication: </i>2024 Jan 10.
  • References: Eliot L, Ahmed A, Khan H, Patel J (2021) Dump the “dimorphism”: Comprehensive synthesis of human brain studies reveals few male-female differences beyond size. Neurosci Biobehav Rev 125:667–697. https://doi.org/10.1016/j.neubiorev.2021.02.026. ; Pomponio R, Erus G, Habes M, et al (2020) Harmonization of large MRI datasets for the analysis of brain imaging patterns throughout the lifespan. Neuroimage 208:116450. https://doi.org/10.1016/j.neuroimage.2019.116450. ; Liew S-L, Zavaliangos-Petropulu A, Jahanshad N, et al (2022) The ENIGMA Stroke Recovery Working Group: Big data neuroimaging to study brain–behavior relationships after stroke. Hum Brain Mapp 43:129–148. https://doi.org/10.1002/hbm.25015. ; Alfaro-Almagro F, Jenkinson M, Bangerter NK, et al (2018) Image processing and Quality Control for the first 10,000 brain imaging datasets from UK Biobank. Neuroimage 166:400–424. https://doi.org/10.1016/j.neuroimage.2017.10.034. ; Poldrack RA, Gorgolewski KJ (2014) Making big data open: data sharing in neuroimaging. Nat Neurosci 17:1510–1517.  https://doi.org/10.1038/nn.3818. (PMID: 10.1038/nn.381825349916) ; Chen S, He Z, Han X, et al (2019) How Big Data and High-performance Computing Drive Brain Science. Genomics Proteomics Bioinformatics 17:381–392. https://doi.org/10.1016/j.gpb.2019.09.003. ; Di Martino A, Yan C-G, Li Q, et al (2014) The autism brain imaging data exchange: towards a large-scale evaluation of the intrinsic brain architecture in autism. Mol Psychiatry 19:659–667. https://doi.org/10.1038/mp.2013.78. (PMID: 10.1038/mp.2013.7823774715) ; Marcus DS, Wang TH, Parker J, et al (2007) Open Access Series of Imaging Studies (OASIS): Cross-sectional MRI Data in Young, Middle Aged, Nondemented, and Demented Older Adults. J Cogn Neurosci 19:1498–1507.  https://doi.org/10.1162/jocn.2007.19.9.1498. (PMID: 10.1162/jocn.2007.19.9.149817714011) ; Van Essen DC, Smith SM, Barch DM, et al (2013) The WU-Minn Human Connectome Project: An overview. Neuroimage 80:62–79. https://doi.org/10.1016/j.neuroimage.2013.05.041. ; Weiner MW, Veitch DP, Aisen PS, et al (2012) The Alzheimer’s Disease Neuroimaging Initiative: a review of papers published since its inception. Alzheimers Dement 8.  https://doi.org/10.1016/J.JALZ.2011.09.172. ; Food and Brain Study - OpenNeuro. https://openneuro.org/datasets/ds004697/versions/1.0.1 . Accessed 2 Oct 2023. ; Helms G, Kallenberg K, Dechent P (2006) Contrast-driven approach to intracranial segmentation using a combination of T2- and T1-weighted 3D MRI data sets. Journal of Magnetic Resonance Imaging 24:790–795.  https://doi.org/10.1002/JMRI.20692. (PMID: 10.1002/JMRI.2069216929528) ; Denis De Senneville B, Manjón J V., Coupé P (2020) RegQCNET: Deep quality control for image-to-template brain MRI affine registration. Phys Med Biol 65.  https://doi.org/10.1088/1361-6560/ABB6BE. ; Tummala S, Thadikemalla VSG, Kreilkamp BAK, et al (2021) Fully automated quality control of rigid and affine registrations of T1w and T2w MRI in big data using machine learning. Comput Biol Med 139:104997. https://doi.org/10.1016/j.compbiomed.2021.104997. ; Bottani S, Burgos N, Maire A, et al (2022) Automatic quality control of brain T1-weighted magnetic resonance images for a clinical data warehouse. Med Image Anal 75:102219. https://doi.org/10.1016/j.media.2021.102219. ; Tang L, Hui Y, Yang H, et al (2022) Medical image fusion quality assessment based on conditional generative adversarial network. Front Neurosci 16.  https://doi.org/10.3389/FNINS.2022.986153/FULL. ; Hann E, Popescu IA, Zhang Q, et al (2021) Deep neural network ensemble for on-the-fly quality control-driven segmentation of cardiac MRI T1 mapping. Med Image Anal 71:102029. https://doi.org/10.1016/j.media.2021.102029. ; Aprea F, Marrone S, Sansone C (2021) Neural Machine Registration for Motion Correction in Breast DCE-MRI. In: 2020 25th International Conference on Pattern Recognition (ICPR). pp 4332–4339. ; Samani ZR, Alappatt JA, Parker D, et al (2020) QC-Automator: Deep Learning-Based Automated Quality Control for Diffusion MR Images. Front Neurosci 13.  https://doi.org/10.3389/fnins.2019.01456. ; Kiser K, Meheissen MAM, Mohamed ASR, et al (2019) Prospective quantitative quality assurance and deformation estimation of MRI-CT image registration in simulation of head and neck radiotherapy patients. Clin Transl Radiat Oncol 18:120–127. https://doi.org/10.1016/j.ctro.2019.04.018. ; Shoroshov G, Senyukova O, Semenov D, Sharova D (2022) MRI Quality Control Algorithm Based on Image Analysis Using Convolutional and Recurrent Neural Networks. Proc IEEE Symp Comput Based Med Syst 2022-July:412–415. https://doi.org/10.1109/CBMS55023.2022.00080. ; Klapwijk ET, van de Kamp F, van der Meulen M, et al (2019) Qoala-T: A supervised-learning tool for quality control of FreeSurfer segmented MRI data. Neuroimage 189:116–129. https://doi.org/10.1016/j.neuroimage.2019.01.014. (PMID: 10.1016/j.neuroimage.2019.01.01430633965) ; Islam KT, Wijewickrema S, O’Leary S (2021) A deep learning based framework for the registration of three dimensional multi-modal medical images of the head. Scientific Reports 2021 11:1 11:1–13. https://doi.org/10.1038/s41598-021-81044-7. ; Sokooti H, de Vos B, Berendsen F, et al (2019) 3D Convolutional Neural Networks Image Registration Based on Efficient Supervised Learning from Artificial Deformations. https://doi.org/10.48550/arxiv.1908.10235. ; Dubost F, de Bruijne M, Nardin M, et al (2020) Multi-atlas image registration of clinical data with automated quality assessment using ventricle segmentation. Med Image Anal 63:101698. https://doi.org/10.1016/J.MEDIA.2020.101698. (PMID: 10.1016/J.MEDIA.2020.101698323398967275913) ; Benhajali Y, Badhwar AP, Spiers H, et al (2020) A Standardized Protocol for Efficient and Reliable Quality Control of Brain Registration in Functional MRI Studies. Front Neuroinform 14. https://doi.org/10.3389/FNINF.2020.00007. ; Fonov VS, Dadar M, ADNI TPARG, Collins DL (2022) DARQ: Deep learning of quality control for stereotaxic registration of human brain MRI to the T1w MNI-ICBM 152 template. Neuroimage 257:. https://doi.org/10.1016/J.NEUROIMAGE.2022.119266. ; Ravi D, Barkhof F, Alexander DC, et al (2022) An efficient semi-supervised quality control system trained using physics-based MRI-artefact generators and adversarial training. ; Galib SM, Lee HK, Guy CL, et al (2020) A fast and scalable method for quality assurance of deformable image registration on lung CT scans using convolutional neural networks. Med Phys 47:99–109. https://doi.org/10.1002/mp.13890. (PMID: 10.1002/mp.1389031663137) ; Sokooti H, Yousefi S, Elmahdy MS, et al (2021) Hierarchical Prediction of Registration Misalignment Using a Convolutional LSTM: Application to Chest CT Scans. IEEE Access 9:62008–62020.  https://doi.org/10.1109/ACCESS.2021.3074124. (PMID: 10.1109/ACCESS.2021.3074124) ; Muenzing SEA, van Ginneken B, Murphy K, Pluim JPW (2012) Supervised quality assessment of medical image registration: Application to intra-patient CT lung registration. Med Image Anal 16:1521–1531.  https://doi.org/10.1016/j.media.2012.06.010. (PMID: 10.1016/j.media.2012.06.01022981428) ; Koenig LN, Day GS, Salter A, et al (2020) Select Atrophied Regions in Alzheimer disease (SARA): An improved volumetric model for identifying Alzheimer disease dementia. Neuroimage Clin 26:102248.  https://doi.org/10.1016/J.NICL.2020.102248. (PMID: 10.1016/J.NICL.2020.102248323344047182765) ; Gorgolewski K, Burns CD, Madison C, et al (2011) Nipype: A flexible, lightweight and extensible neuroimaging data processing framework in Python. Front Neuroinform 5:13. https://doi.org/10.3389/FNINF.2011.00013/ABSTRACT. (PMID: 10.3389/FNINF.2011.00013/ABSTRACT218978153159964) ; Smith SM, Jenkinson M, Woolrich MW, et al (2004) Advances in functional and structural MR image analysis and implementation as FSL. Neuroimage 23 Suppl 1: https://doi.org/10.1016/J.NEUROIMAGE.2004.07.051. ; Tustison NJ, Avants BB, Cook PA, et al (2010) N4ITK: Improved N3 Bias Correction. IEEE Trans Med Imaging 29:1310–1320. https://doi.org/10.1109/TMI.2010.2046908. (PMID: 10.1109/TMI.2010.2046908203784673071855) ; Baur C, Denner S, Wiestler B, et al (2021) Autoencoders for unsupervised anomaly segmentation in brain MR images: A comparative study. Med Image Anal 69:101952.  https://doi.org/10.1016/J.MEDIA.2020.101952. (PMID: 10.1016/J.MEDIA.2020.10195233454602) ; Chatterjee S, Sciarra A, Dünnwald M, et al (2022) StRegA: Unsupervised anomaly detection in brain MRIs using a compact context-encoding variational autoencoder. Comput Biol Med 149:106093.  https://doi.org/10.1016/J.COMPBIOMED.2022.106093. (PMID: 10.1016/J.COMPBIOMED.2022.10609336116318) ; Luo G, Xie W, Gao R, et al (2023) Unsupervised anomaly detection in brain MRI: Learning abstract distribution from massive healthy brains. Comput Biol Med 154:106610. https://doi.org/10.1016/J.COMPBIOMED.2023.106610. (PMID: 10.1016/J.COMPBIOMED.2023.10661036708653) ; Kingma DP, Ba JL (2014) Adam: A Method for Stochastic Optimization. 3rd International Conference on Learning Representations, ICLR 2015 - Conference Track Proceedings. https://doi.org/10.48550/arxiv.1412.6980. ; Le NQK, Ho QT, Nguyen VN, Chang JS (2022) BERT-Promoter: An improved sequence-based predictor of DNA promoter using BERT pre-trained model and SHAP feature selection. Comput Biol Chem 99:107732.  https://doi.org/10.1016/J.COMPBIOLCHEM.2022.107732. (PMID: 10.1016/J.COMPBIOLCHEM.2022.10773235863177) ; Lam LHT, Do DT, Diep DTN, et al (2022) Molecular subtype classification of low-grade gliomas using magnetic resonance imaging-based radiomics and machine learning. NMR Biomed 35:e4792. https://doi.org/10.1002/NBM.4792. (PMID: 10.1002/NBM.479235767281) ; Gondara L (2016) Medical Image Denoising Using Convolutional Denoising Autoencoders. In: 2016 IEEE 16th International Conference on Data Mining Workshops (ICDMW). pp 241–246. ; Pintelas E, Livieris IE, Pintelas PE (2021) A Convolutional Autoencoder Topology for Classification in High-Dimensional Noisy Image Datasets. Sensors 21.  https://doi.org/10.3390/s21227731.
  • Contributed Indexing: Keywords: 3D convolutional autoencoder; Affine registration; Big data; Quality control; Structural MRI
  • Entry Date(s): Date Created: 20240212 Date Completed: 20240304 Latest Revision: 20240329
  • Update Code: 20240329
  • PubMed Central ID: PMC10976877

Klicken Sie ein Format an und speichern Sie dann die Daten oder geben Sie eine Empfänger-Adresse ein und lassen Sie sich per Email zusenden.

oder
oder

Wählen Sie das für Sie passende Zitationsformat und kopieren Sie es dann in die Zwischenablage, lassen es sich per Mail zusenden oder speichern es als PDF-Datei.

oder
oder

Bitte prüfen Sie, ob die Zitation formal korrekt ist, bevor Sie sie in einer Arbeit verwenden. Benutzen Sie gegebenenfalls den "Exportieren"-Dialog, wenn Sie ein Literaturverwaltungsprogramm verwenden und die Zitat-Angaben selbst formatieren wollen.

xs 0 - 576
sm 576 - 768
md 768 - 992
lg 992 - 1200
xl 1200 - 1366
xxl 1366 -